Application of Coordinated SOFC and SMES Robust Control for Stabilizing Tie-Line Power

نویسندگان

  • Ning Zhang
  • Wei Gu
  • Haojun Yu
  • Wei Liu
چکیده

Wind power causes fluctuations in power systems and introduces issues concerning system stability and power quality because of the lack of controllability of its discontinuous and intermittent resources. This paper presents a coordinated control strategy for solid oxide fuel cells (SOFCs) and superconducting magnetic energy storage (SMES) to match the intermittent wind power generation and compensate for the rapid load changes. An optimal H∞ control method, where the weighting function selection is expressed as an optimization problem, is proposed to mitigate tie-line power fluctuations and the mixed-sensitivity approach is used to deal with the interference suppression. Simulation results show that the proposed method significantly improves the smoothing effect of wind power fluctuations. Compared with the conventional control method, the proposed method has better anti-interference performance in various operating situations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power Swings Damping Improvement with STATCOM and SMES Based on the Direct Lyapunov Method

In this paper a comprehensive approach is presented to improve power swings damping based on direct Lyapunov method. The approach combines superconducting magnetic energy storage (SMES) system with static synchronous compensator (STATCOM). Considering the energy absorption/injection ability of SMES, in transient states the combination exchanges both active and reactive powers with power system....

متن کامل

Coordinated control of TCPS and SMES for frequency regulation of interconnected restructured power systems with dynamic participation from DFIG based wind farm

Among the several wind generation technologies, variable-speed wind turbines utilizing doubly fed induction generators (DFIG) are gaining momentum in the power industry. Increased penetration of these wind turbine generators displaces conventional synchronous generators which results in erosion of system frequency. With this assertion, the paper analyzes the dynamic participation of DFIG for fr...

متن کامل

Robust Coordinated Design of UPFC Damping Controller and PSS Using Chaotic Optimization Algorithm

A Chaotic Optimization Algorithm (COA) based approach for the robust coordinated design of the UPFC power oscillation damping controller and the conventional power system stabilizer has been investigated in this paper. Chaotic Optimization Algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from local optimum, is a promising tool fo...

متن کامل

A Robust Discrete FuzzyP+FuzzyI+FuzzyD Load Frequency Controller for Multi-Source Power System in Restructuring Environment

In this paper a fuzzy logic (FL) based load frequency controller (LFC) called discrete FuzzyP+FuzzyI+FuzzyD (FP+FI+FD) is proposed to ensure the stability of a multi-source power system in restructured environment. The whale optimization algorithm (WOA) is used for optimum designing the proposed control strategy to reduce fuzzy system effort and achieve the best performance of LFC task. Further...

متن کامل

Application of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)

This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013